Modeling statin-induced myopathy with human iPSCs reveals that impaired proteostasis underlies the myotoxicity and is targetable for the prevention

Author:

Zhao Xiaolin,Ni Liyang,Kubo Miharu,Matsuto Mariko,Sakurai Hidetoshi,Shimizu Makoto,Takahashi Yu,Sato Ryuichiro,Yamauchi YoshioORCID

Abstract

AbstractStatins, HMG-CoA reductase inhibitors, have been widely prescribed to lower circulating low-density lipoprotein cholesterol levels and reduce the risk of cardiovascular disease. Although statins are well tolerated, statin-associated muscle symptoms (SAMS) are the major adverse effect and cause statin intolerance. Therefore, understanding the molecular mechanisms of SAMS and identifying effective strategies for its prevention are of significant clinical importance; however, both remain unclear. Here we establish a model of statin-induced myopathy (SIM) with human induced pluripotent stem cell (hiPSC)-derived myocytes (iPSC-MCs) and investigate the effect of statins on protein homeostasis (proteostasis) that affects skeletal muscle wasting and myotoxicity. We show that treating hiPSC-MCs with statins induces atrophic phenotype and myotoxicity, establishing a hiPSC-based SIM model. We then examine whether statins impair the balance between protein synthesis and degradation. The results show that statins not only suppress protein synthesis but also promote protein degradation by upregulating the expression of the muscle-specific E3 ubiquitin ligase Atrogin-1 in a mevalonate pathway-dependent manner. Mechanistically, blocking the mevalonate pathway inactivates the protein kinase Akt, leading to the inhibition of mTORC1 and GSK3β but the activation of FOXO1. These changes explain the statin-induced impairment in proteostasis. Finally, we show that pharmacological blockage of FOXO1 prevents SIM in hiPSC-MCs, implicating FOXO1 as a key mediator of SIM. Taken together, this study suggests that the mevalonate pathway is critical for maintaining skeletal muscle proteostasis and identifies FOXO1 as a potential target for preventing SIM.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3