Multiplex genome editing eliminates the Warburg Effect without impacting growth rate in mammalian cells

Author:

Hefzi HoomanORCID,Martínez-Monge Iván,Marin de Mas Igor,Cowie Nicholas Luke,Toledo Alejandro Gomez,Noh Soo Min,Karottki Karen Julie la Cour,Decker Marianne,Arnsdorf Johnny,Camacho-Zaragoza Jose Manuel,Kol Stefan,Schoffelen Sanne,Pristovšek Nuša,Hansen Anders Holmgaard,Miguez Antonio A.,Bjorn Sara Petersen,Brøndum Karen Kathrine,Javidi Elham Maria,Jensen Kristian Lund,Stangl Laura,Kreidl Emanuel,Kallehauge Thomas Beuchert,Ley Daniel,Ménard Patrice,Petersen Helle Munck,Sukhova Zulfiya,Bauer Anton,Casanova Emilio,Barron Niall,Malmström Johan,Nielsen Lars K.,Lee Gyun Min,Kildegaard Helene Faustrup,Voldborg Bjørn G.,Lewis Nathan E.ORCID

Abstract

ABSTRACTThe Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. In contrast to long-standing assumptions about the role of aerobic glycolysis, Warburg-null cells maintain wildtype growth rate while producing negligible lactate. Further characterization of Warburg-null CHO cells showed a compensatory increase in oxygen consumption, a near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. These cells remained amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titers and maintaining product glycosylation. Thus, the ability to eliminate the Warburg effect is an important development for biotherapeutic production and provides a tool for investigating a near-universal metabolic phenomenon.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3