Abstract
AbstractBrain metastases (BrM) occur when malignant cells spread from a primary tumor located in other parts of the body to the brain. BrM is a deadly complication for cancer patients and currently lacks effective therapies. Due to the limited access to patient samples, preclinical models remain a valuable tool for studying metastasis development, progression, and response to therapy. Thus, reliable methods for quantifying metastatic burden in these models are crucial. Here, we describe step by step a new semi-automatic machine-learning approach to quantify metastatic burden on mouse whole-brain stereomicroscope images while preserving tissue integrity. This protocol utilizes the open-source, user-friendly image analysis software QuPath. The method is fast, reproducible, unbiased, and provides access to data points not always obtainable with other existing strategies.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献