Sertad1 is elevated and plays a necessary role in synaptic loss, neuron death and cognitive impairment in a model of Alzheimer’s disease

Author:

Ambareen Naqiya,Gharami KusumikaORCID,Biswas Subhas C.ORCID

Abstract

ABSTRACTDysfunctional autophagy is a primary characteristic of Alzheimer’s disease (AD) pathogenesis. How autophagic impairment leads to cellular changes that contributes to AD pathogenesis remains unclear. To study this further, we assessed levels of autophagy related proteins in 5xFAD mice brain at different ages and found their robust upregulation in cortex and hippocampus suggesting increased induction of autophagy with disease progression but failed clearance. We have identified a transcriptional coregulator Sertad1, as a key mediator of dysfunctional autophagy in AD mice. We found a progressive elevation in Sertad1 levels in 5xFAD mice with age compared to wild-type (WT) mice. Sertad1 knockdown in 5xFAD mice brain lowered levels of autophagy related proteins and lysosome marker, LAMP1 suggesting its role in autophagy flux modulation. FoxO3a is an important transcriptional regulator of the autophagy network and lies at the nexus of autophagy-apoptosis cross-talk. We found that Sertad1 knockdown blocked nuclear translocation of FoxO3a along with a restoration in Akt activity. Further, we showed that knockdown of Sertad1 in 5xFAD mice brain improved cognitive functions along with a remarkable restoration in synaptic health and dendritic spine density. Taken together, our results demonstrated that autophagy is robustly induced with disease progression but it is impaired; Sertad1 knockdown restored autophagy defects, synaptic loss and improved learning and memory in AD models. Thus, we propose that Sertad1 acts in a multimodal manner regulating crucial cell death pathways including apoptosis and autophagy and could be an excellent target for therapeutic intervention to combat a multifactorial disorder such as AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3