Probing intracellular determinants of PARP inhibitor selectivity and pharmacology with CeTEAM

Author:

Pires Maria J.,Lovric AlenORCID,Fabbrizi EmanueleORCID,Rotili DanteORCID,Altun MikaelORCID,Valerie Nicholas C.K.ORCID

Abstract

AbstractPARP inhibitors (PARPi) predominantly targeting PARP1 and PARP2 have revolutionized cancer therapy by exploiting synthetic lethality and selectively killing cancer cells with defective DNA repair. However, achieving PARP1 or PARP2-selective inhibitors is difficult due to their close structural homology. Selectivity profiling is typically done with purified proteins, but these lack the complexity of intracellular environments and could therefore be inaccurate. The cellular target engagement by accumulation of mutant (CeTEAM) method provides insights into drug bindingin celluloby means of conditionally stabilized biosensors, thus offering a dynamic view of pharmacological events in living cells. Here, we duplex PARP1 L713F-GFP and PARP2 L269A-mCherry biosensors to systematically characterize potential PARPi binding and cell cycle alterations at the single cell level. Our results reveal that most PARPi are generally equipotent for both PARPs or have slight biases only towards PARP1, not PARP2. AZD5305, a reported PARP1-selective inhibitor, was the exception and appears ∼1600-fold more potent towards PARP1. Surprisingly, niraparib was >10-fold more selective for PARP1, despite reported equipotent biochemical activity. Meanwhile, the next generation PARPi, senaparib, was a potent PARP1/2 binder and DNA trapper. We also assessed the effect of the PARP1/2 active site component, HPF1, on intracellular PARPi binding and see that HPF1 depletion elicits slight deviations in apparent binding potency, while contributing additively to PARP-DNA trapping. These results highlight that multiplexing CeTEAM biosensors and layered genetic perturbations can systematically profile determinants of intracellular drug selectivity. Furthermore, the PARP1/2 CeTEAM platform should facilitate the discovery of selective PARPi for better targeted therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3