A honey bee-associated virus remains infectious and quantifiable in postmortem hosts

Author:

Payne Alexandria N.ORCID,Prayugo VincentORCID,Dolezal Adam G.ORCID

Abstract

ABSTRACTCorpse-mediated transmission is a potentially viable route through which naïve hosts can become infected, but its likelihood for honey bee-associated viruses is largely unknown. While these viruses can be easily detected in deceased bees, it remains unclear if they stay infectious within postmortem hosts or if enough viral RNA degradation—and subsequently virus inactivation—occurs post-host death to render these viruses inviable. This knowledge gap has important implications for how researchers perform honey bee virus studies and for our general understanding of honey bee virus transmission. To better understand the resiliency of honey bee-associated viruses within deceased hosts, we first tested the hypothesis that postmortem specimens, stored in colony-normal temperature and humidity conditions, can be reliably used to quantify virus abundance. To determine this, we experimentally-infected adult honey bees with Israeli acute paralysis virus (IAPV) and then measured the virus levels of individuals sampled live or at different postmortem timepoints (4–, 12–, 24–, and 48–hours post-death) using RT-qPCR and a standard curve absolute quantification method. We found no significant differences based on when bees were sampled, indicating that postmortem honey bees are statistically comparable to using live-sampled bees and can be reliably used to quantify absolute IAPV abundance. We then performed a follow-up experiment that determined whether or not the IAPV detected in postmortem bees remained infectious over time. We found that IAPV extracted from postmortem bees remained highly infectious for at least 48–hours post-death, indicating that any viral RNA degradation that may have occurred during the postmortem interval did not adversely affect IAPV’s overall infectivity. The results from this study suggest that IAPV is more resilient to degradation than previously assumed, support the use of postmortem bees for downstream IAPV analyses, and indicate that postmortem hosts can act as sources of IAPV infection for susceptible individuals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3