LitGene: a transformer-based model that uses contrastive learning to integrate textual information into gene representations

Author:

Jararweh Ala,Macaulay Oladimeji,Arredondo David,Oyebamiji Olufunmilola M,Hu Yue,Tafoya Luis,Zhang Yanfu,Virupakshappa Kushal,Sahu Avinash

Abstract

AbstractRepresentation learning approaches leverage sequence, expression, and network data, but utilize only a fraction of the rich textual knowledge accumulated in the scientific literature. We present LitGene, an interpretable transformer-based model that refines gene representations by integrating textual information. The model is enhanced through a Contrastive Learning (CL) approach that identifies semantically similar genes sharing a Gene Ontology (GO) term. LitGene demonstrates accuracy across eight benchmark predictions of protein properties and robust zero-shot learning capabilities, enabling the prediction of new potential disease risk genes in obesity, asthma, hypertension, and schizophrenia. LitGene’s SHAP-based interpretability tool illuminates the basis for identified disease-gene associations. An automated statistical framework gauges literature support for AI biomedical predictions, providing validation and improving reliability. LitGene’s integration of textual and genetic information mitigates data biases, enhances biomedical predictions, and promotes ethical AI practices by ensuring transparent, equitable, open, and evidence-based insights. LitGene code is open source and also available for use via a public web interface atlitgene.avisahuai.com.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3