Landscape of Differentiation Potentials as a “Hallmark” in Oral-derived MSCs

Author:

Chopra HORCID,Cao C,Alice H,Kak S,Maska BORCID,Tagett RORCID,Sugai J,Garmire L,Kaigler DORCID

Abstract

AbstractBackgroundMesenchymal stem cells (MSCs) offer clinical promise for use in cell therapy approaches for regenerative medicine. A therapeutic challenge is that MSCs from different tissues are phenotypically and functionally distinct. Therefore, this study aims to molecularly characterize oral-derived MSCs by defining one of the three hallmarks of MSCs, differentiation potential, to discern their true molecular identities.MethodsThree different populations of oral tissue MSCs (from alveolar bone-aBMSCs; from dental pulp-DPSCs; and from gingiva-GMSCs) from three different patients were isolated and cultured. These MSCs were characterized for their stemness by flow cytometry and multi-differentiation potential, and their RNA was also isolated and analyzed quantitatively with RNA sequencing. Total mRNA-seq was performed and differentially expressed genes (DEGs) were identified in pairwise (DPSCs vs. aBMSCs, GMSCs vs. aBMSCs, and GMSCs vs. DPSCs) and tissue-specific comparisons (aBMSCs vs. Others, DPSCs vs. Others, GMSCs vs. Others) (FDR,p<0.05). Further, these DEGs, either common between MSC populations or unique to a specific MSC population, were evaluated for pathways and biological processesResultsaBMSCs, DPSCs, and GMSCs were successfully isolated and characterized. The tissue-specific comparison revealed that DEGs were most numerous in DPSCs (693 genes) as compared to aBMSCs (103 genes) or DPSCs (232 genes). Statistically significant DEGs through pairwise comparisons present higher numbers in GMSCs vs. DPSCs (627) as compared to either DPSCs vs aBMSCs (286) or GMSCs vs. aBMSCs (82). Further analysis found that RUNX2, IBSP, SOX6, ACAN, and VCAM1 were significantly upregulated in aBMSCs. In DPSCs, BMP4 and IL6 were significantly downregulated, whereas AXL and NES were significantly upregulated. In GMSCs, AGPT1, SEMA4D, and PGDFA were significantly downregulated. Additionally, MAPK, PI3-AKT, and RAS signaling pathways were significantly regulated in GMSCs. Interestingly, aBMSCs and DPSCs revealed positive regulation of osteoblast differentiation, whereas GMSCs revealed negative regulation of osteoblast differentiation. DPSCs also revealed negative regulation of angiogenesis.ConclusionsOral-derived MSCs have an inherent “landscape” of differentiation defined by their tissue of origin; yet this differentiation potential can be modulated by their microenvironment.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3