Large Language Models Improve the Identification of Emergency Department Visits for Symptomatic Kidney Stones

Author:

Bejan Cosmin A.ORCID,Reed Amy M,Mikula Matthew,Zhang SiweiORCID,Xu YaominORCID,Fabbri DanielORCID,Embí Peter J.ORCID,Hsi Ryan S.ORCID

Abstract

AbstractBackgroundRecent advancements of large language models (LLMs) like Generative Pre-trained Transformer 4 (GPT-4) have generated significant interest among the scientific community. Yet, the potential of these models to be utilized in clinical settings remains largely unexplored. This study investigated the abilities of multiple LLMs and traditional machine learning models to analyze emergency department (ED) reports and determine if the corresponding visits were caused by symptomatic kidney stones.MethodsLeveraging a dataset of manually annotated ED reports, we developed strategies to enhance the performance of GPT-4, GPT-3.5, and Llama-2 including prompt optimization, zero- and few-shot prompting, fine-tuning, and prompt augmentation. Further, we implemented fairness assessment and bias mitigation methods to investigate the potential disparities by these LLMs with respect to race and gender. A clinical expert manually assessed the explanations generated by GPT-4 for its predictions to determine if they were sound, factually correct, unrelated to the input prompt, or potentially harmful. The evaluation includes a comparison between LLMs, traditional machine learning models (logistic regression, extreme gradient boosting, and light gradient boosting machine), and a baseline system utilizing International Classification of Diseases (ICD) codes for kidney stones.ResultsThe best results were achieved by GPT-4 (macro-F1=0.833, 95% confidence interval [CI]=0.826–0.841) and GPT-3.5 (macro-F1=0.796, 95% CI=0.796–0.796), both being statistically significantly better than the ICD-based baseline result (macro-F1=0.71). Ablation studies revealed that the initial pre-trained GPT-3.5 model benefits from fine-tuning when using the same parameter configuration. Adding demographic information and prior disease history to the prompts allows LLMs to make more accurate decisions. The evaluation of bias found that GPT-4 exhibited no racial or gender disparities, in contrast to GPT-3.5, which failed to effectively model racial diversity. The analysis of explanations provided by GPT-4 demonstrates advanced capabilities of this model in understanding clinical text and reasoning with medical knowledge.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3