Implicit Neural Representation of Multi-shell Constrained Spherical Deconvolution for Continuous Modeling of Diffusion MRI

Author:

Hendriks TomORCID,Vilanova AnnaORCID,Chamberland MaximeORCID

Abstract

AbstractDiffusion magnetic resonance imaging (dMRI) provides insight into the micro and macro-structure of the brain. Multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) models the underlying local fiber orientation distributions (FODs) using the dMRI signal. While generally producing high-quality FODs, MSMT-CSD is a voxel-wise method that can be impacted by noise and produce erroneous FODs. Local models also do not make use of the spatial correlation that is present between neighboring voxels to increase inference power. In the case of MSMT-CSD, costly interpolation computations are necessary to obtain FODs outside of the voxel center points. Expanding upon previous work, we apply the implicit neural representation (INR) methodology to the MSMT-CSD model. This results in an unsupervised machine learning framework that generates a continuous representation of a given dMRI dataset. The input of the INR consists of coordinates in the volume, which produce the spherical harmonics coefficients parameterizing an FOD at any desired location. A key characteristic of our model is its ability to leverage spatial correlations in the volume, which acts as a form of regularization. We evaluate the output FODs quantitatively and qualitatively in synthetic and real dMRI datasets and compare them to existing methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3