More affordable and effective noninvasive SNP genotyping using high-throughput amplicon sequencing

Author:

Eriksson Charlotte E.,Ruprecht Joel,Levi Taal

Abstract

AbstractNon-invasive genotyping methods have become key elements of wildlife research over the last two decades, but their widespread adoption is limited by high costs, low success rates, and high error rates. The information lost when genotyping success is low may lead to decreased precision in animal population densities which could misguide conservation and management actions. Single nucleotide polymorphisms (SNPs) provide a promising alternative to traditionally used microsatellites as SNPs allow amplification of shorter DNA fragments, are less prone to genotyping errors, and produce results that are easily shared among laboratories. Here, we outline a detailed protocol for cost-effective and accurate noninvasive SNP genotyping using highly multiplexed amplicon sequencing optimized for degraded DNA. We validated this method for individual identification by genotyping 216 scats, 18 hairs and 15 tissues from coyotes (Canis latrans). Our genotyping success rate for scat samples was 93%, and 100% for hair and tissue, representing a substantial increase compared to previous microsatellite-based studies at a cost of under $5 per PCR replicate (excluding labor). The accuracy of the genotypes was further corroborated in that genotypes from scats matching known, GPS-collared coyotes were always located within the territory of the known individual. We also show that different levels of multiplexing produced similar results, but that PCR product cleanup strategies can have substantial effects on genotyping success. By making noninvasive genotyping more affordable, accurate, and efficient, this research may allow for a substantial increase in the use of noninvasive methods to monitor and conserve free-ranging wildlife populations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3