To be a Grid Cell: Shuffling procedures for determining “Gridness”

Author:

Barry C.ORCID,Burgess N.ORCID

Abstract

AbstractGrid cells in freely behaving mammals are defined by the strikingly regular periodic spatial distribution of their firing. The standard method of identification calculates the “Gridness” of the spatial firing pattern, with significance being defined relative to the 95th percentile of a null distribution of the Gridness values found after randomly permuting spike times relative to behaviour. We determined the false-positive rate by applying the method to simulated firing with irregular spatially inhomogeneity (i.e. randomly distributed Gaussian patches). We found surprisingly high false positive rates (potentially approaching 20%), which were strongly dependent on the type of Gridness measure used and the number of spatial fields in the synthetic data. This likely reflects the spatial homogeneity of the distributions of spikes after shuffling compared to the inhomogeneous synthetic data. However, false positive rates were reduced (generally below 8%), and less dependent on other factors, when an alternative spatial field shuffling method was used to generate the null Gridness distribution. For comparison, we analysed single unit recordings made using tetrodes implanted into rat medial entorhinal cortex for the purpose of finding grid cells. We found 24% of active neurons were classified as grid cells via spike shuffling and 22% via field shuffling. These results, and the potentially high false-positive rate when classifying cells with patchy but irregular firing as grid cells, indicate that the proportion of cells with regular grid-like firing patterns can be over-estimated by standard methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3