Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages

Author:

Fang Yufeng “Francis”,Coelho Marco A.,Shu Haidong,Schotanus Klaas,Thimmappa Bhagya C.,Yadav Vikas,Chen Han,Malc Ewa P.,Wang Jeremy,Mieczkowski Piotr A.,Kronmiller Brent,Tyler Brett M.,Sanyal KaustuvORCID,Dong Suomeng,Nowrousian MinouORCID,Heitman Joseph

Abstract

AbstractCentromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly.Author summaryOomycetes are fungal-like microorganisms that belong to the stramenopiles within the Stramenopila-Alveolata-Rhizaria (SAR) supergroup. The Phytophthora oomycetes are infamous as plant killers, threatening crop production worldwide. Because of the highly repetitive nature of their genomes, assembly of oomycete genomes presents challenges that impede identification of centromeres, which are chromosomal sites mediating faithful chromosome segregation. We report long-read sequencing-based genome assembly of the Phytophthora sojae reference strain, which facilitated the discovery of centromeres. P. sojae harbors large regional centromeres fully embedded in heterochromatin, and enriched for a Copia-like transposon that is also found in discrete clusters in other oomycetes. This study provides insight into the oomycete genome organization, broadens our knowledge of the centromere structure, function and evolution in eukaryotes, and may help elucidate the high frequency of aneuploidy during oomycete reproduction.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3