Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix

Author:

Moriarty Nigel W.ORCID,Janowski Pawel A.,Swails Jason M.,Nguyen Hai,Richardson Jane S.,Case David A.,Adams Paul D.

Abstract

AbstractThe refinement of biomolecular crystallographic models relies on geometric restraints to help address the paucity of experimental data typical in these experiments. Limitations in these restraints can degrade the quality of the resulting atomic models. Here we present an integration of the full all-atom Amber molecular dynamics force field into Phenix crystallographic refinement, which enables a more complete modeling of biomolecular chemistry. The advantages of the force field include a carefully derived set of torsion angle potentials, an extensive and flexible set of atom types, Lennard-Jones treatment of non-bonded interactions and a full treatment of crystalline electrostatics. The new combined method was tested against conventional geometry restraints for over twenty-two thousand protein structures. Structures refined with the new method show substantially improved model quality. On average, Ramachandran and rotamer scores are somewhat better; clash scores and MolProbity scores are significantly improved; and the modelling of electrostatics leads to structures that exhibit more, and more correct, hydrogen bonds than those refined with traditional geometry restraints. We find in general that model improvements are greatest at lower resolutions, prompting plans to add the Amber target function to real-space refinement for use in electron cryo-microscopy. This work opens the door to the future development of more advanced applications such as Amber-based ensemble refinement, quantum mechanical representation of active sites and improved geometric restraints for simulated annealing.IMPORTANTthis document contains embedded data - to preserve data integrity, please ensure where possible that the IUCr Word tools (available from http://journals.iucr.org/services/docxtemplate/) are installed when editing this document.SynopsisThe full Amber force field has been integrated into Phenix as an alternative refinement target. With a slight loss in speed, it achieves improved stereochemistry, fewer steric clashes and better hydrogen bonds.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3