Similarity and strength of glomerular odor representations define neural metric of sniff-invariant discrimination time

Author:

Bhattacharjee Anindya S.ORCID,Konakamchi Sasank,Turaev Dmitrij,Vincis RobertoORCID,Nunes Daniel,Dingankar Atharva A.,Spors Hartwig,Carleton Alan,Kuner Thomas,Abraham Nixon M.

Abstract

AbstractThe olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remained unclear, how these activity patterns intersect with sampling behavior to account for the time required to discriminate odors. Using different classes of volatile stimuli, we investigated glomerular activity patterns and sniffing behavior during olfactory decision-making. Mice discriminated monomolecular odorants and binary mixtures on a fast time scale and learned to increase their breathing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in breathing frequency, monomolecular odorants were discriminated within 10-40 ms while binary mixtures required an additional 60-70 ms. Intrinsic imaging of odor-evoked glomerular activity maps in anesthetized and awake mice revealed that the Euclidean distance between glomerular patterns elicited by different odors, a measure of similarity and activation strength, was anti-correlated with discrimination time. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3