Machine learning predicts immunoglobulin light chain toxicity through somatic mutations

Author:

Garofalo Maura,Piccoli Luca,Romeo Margherita,Barzago Maria Monica,Ravasio Sara,Foglierini Mathilde,Matkovic Milos,Sgrignani Jacopo,De Gasparo Raoul,Prunotto Marco,Varani Luca,Diomede Luisa,Michielin Olivier,Lanzavecchia Antonio,Cavalli Andrea

Abstract

AbstractIn systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LCs) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage. However, delays in diagnosis are common, with a consequent poor patient’s prognosis, as symptoms usually appear only after strong organ involvement. Here, we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieved a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieved a prediction accuracy of 83%. Furthermore, we were able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3