Precise regulation of the relative rates of surface area and volume synthesis in dynamic environments

Author:

Shi Handuo,Hu Yan,Huang Kerwyn Casey

Abstract

AbstractBacterial cells constantly face complex environmental changes in their natural habitats. While steady-state cell size correlates with nutrient-determined growth rate, it remains unclear how cells regulate their morphology during rapid environmental changes. Here, we systematically quantified cellular dimensions throughout passage cycles of stationary-phase cells diluted into fresh medium and grown back to saturation, and found that cells exhibit characteristic dynamics in surface area to volume ratio (SA/V). SA/V dynamics were conserved across many genetic/chemical perturbations, as well as across species and growth temperatures. We developed a model with a single fitting parameter, the time delay between surface and volume synthesis, that quantitatively explained our SA/V observations, and showed that the time delay was indeed due to differential expression of volume and surface-related genes. The first division after dilution occurred at a tightly controlled SA/V, a previously unrecognized size-control mechanism highlighting the relevance of SA/V. Finally, our time-delay model successfully predicted the quantitative changes in SA/V dynamics due to altered surface area synthesis rates or time delays from translation inhibition. Our minimal model thus provides insight into how cells regulate their morphologies through differential regulation of surface area and volume synthesis and potentiates deep understanding of the connections between growth rate and cell shape in complex environments.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3