Statistical modelling of bacterial promoter sequences for regulatory motif discovery with the help of transcriptome data: application to Listeria monocytogenes

Author:

Sultan Ibrahim,Fromion VincentORCID,Schbath Sophie,Nicolas PierreORCID

Abstract

AbstractAutomatic de novo identification of the main regulons of a bacterium from genome and transcriptome data remains a challenge. To address this task, we propose a statistical model of promoter DNA sequences that can use information on exact positions of the transcription start sites and condition-dependent expression profiles. Two main novelties are to allow overlaps between motif occurrences and to incorporate covariates summarising expression profiles (e.g. coordinates in projection spaces or hierarchical clustering trees). All parameters are estimated using a dedicated trans-dimensional Markov chain Monte Carlo algorithm that adjusts, simultaneously, for many motifs and many expression covariates: the width and palindromic properties of the corresponding position-weight matrices, the number of parameters to describe position with respect to the transcription start site, and the choice of relevant expression covariates. A data-set of transcription start sites and expression profiles available for the Listeria monocytogenes is analysed. The results validate the approach and provide a new global view of the transcription regulatory network of this important model food-borne pathogen. A previously unreported motif that may play an important role in the regulation of growth was found in promoter regions of ribosomal protein genes.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. A survey of motif discovery methods in an integrated framework;Biology Direct,2006

2. Motif discovery and transcription factor binding sites before and after the next-generation sequencing era;Briefings in Bioinformatics,2012

3. An Overview on the Distribution of Word Counts in Markov Chains

4. In silico discovery of transcription regulatory elements in Plasmodium falciparum

5. Computational discovery of regulatory elements in a continuous expression space;Genome Biology,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3