16S rRNA gene sequencing reveals site-specific signatures of the upper and lower airways of cystic fibrosis patients

Author:

Lucas Sarah K.,Yang Robert,Dunitz Jordan M.,Boyer Holly C.,Hunter Ryan C.ORCID

Abstract

ABSTRACTRationaleChronic rhinosinusitis (CRS) is an inflammatory disorder of the sinonasal mucosa associated with microbial colonization. Metastasis of sinus microbiota into the lower airways is thought have significant implications in the development of chronic respiratory disease. However, this dynamic has not been thoroughly investigated in cystic fibrosis (CF) patients, where lower airway infections are the primary driver of patient mortality. Given the high prevalence of CRS in CF patients and the proposed infection dynamic between the upper and lower airways, a better understanding of sinus-lung continuum is warranted.ObjectiveTo compare the microbiome of matched sinus mucus and lung sputum samples from CF subjects undergoing functional endoscopic sinus surgery (FESS) for treatment of CRS.MethodsMucus was isolated from the sinuses and lungs of twelve CF patients undergoing FESS. 16S ribosomal RNA gene sequencing was then performed to compare bacterial communities of the CF lung and sinus niches. Finally, functional profiling was performed to predict bacterial metagenomes from the 16S dataset, and was used to compare pathogenic bacterial phenotypes between the upper and lower airways.Measurements and Main ResultsBacterial richness was comparable between airway sites, though sinus and lung environments differed in community evenness, with the sinuses harboring a higher prevalence of dominant microorganisms. Beta diversity metrics also revealed that samples clustered more consistently by airway niche rather than by individual. Finally, predicted metagenomes showed that anaerobic metabolism was enriched in the lung environment, while genes associated with both biofilm formation and Gram identity were not variable between sites.ConclusionsSinus and lung microbiomes are distinct with respect to richness and evenness, while sinus communities have a higher incidence of a dominant taxon. Additionally, ordination analyses point to sinus and lung environments as being stronger determinants of microbial community structure than the individual patient. Finally, BugBase-predicted metagenomes revealed anaerobic phenotypes to be in higher abundance in the lung relative to the sinuses. Our findings indicate that while the paranasal sinuses and lungs may still comprise a unified airway in which lower airways are seeded by sinus microbiota, these discrete airway microenvironments harbor distinct bacterial communities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3