The spindle assembly checkpoint functions during early development in non-chordate embryos

Author:

Chenevert JanetORCID,Roca Marianne,Besnardeau LydiaORCID,Ruggiero Antonella,Nabi DalilehORCID,McDougall AlexORCID,Copley Richard R.,Christians ElisabethORCID,Castagnetti StefaniaORCID

Abstract

In eukaryotic cells, a spindle assembly checkpoint (SAC) ensures accurate chromosome segregation. This control mechanism monitors proper attachment of chromosomes to spindle microtubules and delays mitotic progression if connections are erroneous or absent. The SAC operates in all eukaryotic cells tested so far, but is thought to be relaxed during early embryonic development in animals. Here, we evaluate the checkpoint response to lack of kinetochore-spindle microtubule interactions in early embryos of diverse animal species from the main metazoan groups. Our analysis shows that there are two classes of embryos, either proficient or deficient for SAC activation during cleavage. Sea urchins, mussels and jellyfish embryos show a prolonged mitotic block in the absence of spindle microtubules from the first cleavage division, while ascidian and amphioxus embryos, like those of Xenopus and zebrafish, continue mitotic cycling without delay. SAC competence during early development shows no correlation with cell size, chromosome number or kinetochore to cell volume ratio, ruling out the hypothesis that lack of checkpoint activity in early embryos is due to the large egg volume. Our results instead indicate that there is no inherent incompatibility between SAC activity and large fast-dividing embryonic cells. We suggest that SAC proficiency is the default situation of metazoan embryos, and that SAC activity is specifically silenced in chordate species with fast dividing embryos.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3