Stalk Bending Strength is Strongly Associated with Maize Stalk Lodging Incidence Across Multiple Environments

Author:

Sekhon Rajandeep S.ORCID,Joyner Chase N.,Ackerman Arlyn J.ORCID,McMahan Christopher S.,Cook Douglas D.,Robertson Daniel J.ORCID

Abstract

AbstractStalk lodging in maize results in substantial yield losses worldwide. These losses could be prevented through genetic improvement. However, breeding efforts and genetics studies are hindered by lack of a robust and economical phenotyping method for assessing stalk lodging resistance. A field-based phenotyping platform that induces failure patterns consistent with natural stalk lodging events and measures stalk bending strength in field-grown plants was recently developed. Here we examine the association between data gathered from this new phenotyping platform with counts of stalk lodging incidence on a select group of maize hybrids. For comparative purposes, we examine four additional predictive phenotypes commonly assumed to be related to stalk lodging resistance; namely, rind puncture resistance, cellulose, hemicellulose, and lignin. Historical counts of lodging incidence were gathered on 47 hybrids, grown in 98 distinct environments, spanning four years and 41 unique geographical locations in North America. Using Bayesian generalized linear mixed effects models, we show that stalk lodging incidence is associated with each of the five predictive phenotypes. Further, based on a joint analysis we demonstrate that, among the phenotypes considered, stalk bending strength measured by the new phenotyping platform is the most important predictive phenotype of naturally occurring stalk lodging incidence in maize, followed by rind puncture resistance and cellulose content. This study demonstrates that field-based measurements of stalk bending strength provide a reliable estimate of stalk lodging incidence. The stalk bending strength data acquired from the new phenotyping platform will be valuable for phenotypic selection in breeding programs and for generating mechanistic insights into the genetic regulation of stalk lodging resistance.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3