Abstract
Origins of eukaryotic DNA replication are ‘licensed’ during G1 phase of the cell cycle by loading the six related minichromosome maintenance (MCM) proteins into a double hexameric ring around double-stranded DNA. In S phase, some double hexamers (MCM DHs) are converted into active CMG (Cdc45-MCM-GINS) helicases which nucleate assembly of bidirectional replication forks. The remaining unfired MCM DHs act as ‘dormant’ origins to provide backup replisomes in the event of replication fork stalling. The fate of unfired MCM DHs during replication is unknown. Here we show that active replisomes cannot remove unfired MCM DHs. Instead, they are pushed ahead of the replisome where they prevent fork convergence during replication termination and replisome progression through nucleosomes. Pif1 helicase, together with the replisome, can remove unfired MCM DHs specifically from replicating DNA, allowing efficient replication and termination. Our results provide an explanation for how excess replication license is removed during S phase.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献