The discovery of gene mutations making SARS-CoV-2 well adapted for humans: host-genome similarity analysis of 2594 genomes from China, the USA and Europe

Author:

Sun Weitao

Abstract

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense single-stranded virus approximately 30 kb in length, causes the ongoing novel coronavirus disease-2019 (COVID-19). Studies confirmed significant genome differences between SARS-CoV-2 and SARS-CoV, suggesting that the distinctions in pathogenicity might be related to genomic diversity. However, the relationship between genomic differences and SARS-CoV-2 fitness has not been fully explained, especially for open reading frame (ORF)-encoded accessory proteins. RNA viruses have a high mutation rate, but how SARS-CoV-2 mutations accelerate adaptation is not clear. This study shows that the host-genome similarity (HGS) of SARS-CoV-2 is significantly higher than that of SARS-CoV, especially in the ORF6 and ORF8 genes encoding proteins antagonizing innate immunity in vivo. A power law relationship was discovered between the HGS of ORF3b, ORF6, and N and the expression of interferon (IFN)-sensitive response element (ISRE)-containing promoters. This finding implies that high HGS of SARS-CoV-2 genome may further inhibit IFN I synthesis and cause delayed host innate immunity. An ORF1ab mutation, 10818G>T, which occurred in virus populations with high HGS but rarely in low-HGS populations, was identified in 2594 genomes with geolocations of China, the USA and Europe. The 10818G>T caused the amino acid mutation M37F in the transmembrane protein nsp6. The results suggest that the ORF6 and ORF8 genes and the mutation M37F may play important roles in causing COVID-19. The findings demonstrate that HGS analysis is a promising way to identify important genes and mutations in adaptive strains, which may help in searching potential targets for pharmaceutical agents.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3