Molecular and functional characterization of buffalo nasal epithelial odorant binding proteins and their structural insights by in-silico and biochemical approach

Author:

Manikkaraja ChidhambaramORCID,Mam BhavikaORCID,Singh RandhirORCID,Nagarathnam Balasubramanian,George Geen,Gulyani AkashORCID,Archunan GovindharajuORCID,Sowdhamini RamanathanORCID

Abstract

AbstractThe olfactory system is capable of detecting and distinguishing thousands of environmental odorants that play a key role in reproduction, social behaviours including pheromones influenced classical events. Membrane secretary odorant binding proteins (OBPs) are soluble lipocalins, localized in the nasal membrane of mammals. They bind and carry odorants within the nasal epithelium to putative olfactory transmembrane receptors (ORs). While the existence of OBPs and their significant functions are very well known in insects and laboratory mammals, there is little information about the species-specific OBPs in buffaloes. In fact, the OBP of nasal epithelium has not yet been exploited to develop a suitable technique to detect estrus which is being reported as a difficult task in buffalo. In the present study, using molecular biology and protein engineering approaches, we have cloned six novel OBP isoforms from buffalo nasal epithelium (bnOBPs). Furthermore, 3D model was developed and molecular-docking, dynamics experiments were performed by In-silico approach. In particular, we found four residues (Phe104, Phe134, Phe69 and Asn118) from OBP1a, which had strong binding affinities towards two sex pheromones, specifically oleic acid and p-cresol. We expressed this protein in Escherichia coli to examine its involvement in the sex pheromone perception from female buffalo urine and validated through fluorescence quenching studies. Interestingly, fluorescence binding experiments also showed similar strong binding affinities of OBP1a to oleic acid and p-cresol. By using structural data, the binding specificity is also verified by site-directed mutagenesis of the four residues followed by in-vitro binding assays. Our results enable to better understand the functions of different nasal epithelium OBPs in buffaloes. They also lead to improved understanding of the interaction between olfactory proteins and odorants to develop highly selective biosensing devices for non-invasive detection of estrus in buffaloes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3