Label-free and Multimodal Second Harmonic Generation Light Sheet Microscopy

Author:

Hanrahan NiallORCID,Lane Simon I. R.ORCID,Johnson PeterORCID,Bourdakos Konstantinos,Brereton ChristopherORCID,Ridley Robert A.,Davies Elizabeth R.ORCID,Hosny Neveen A.,Spickermann Gunnar,Forster Robert,Malcolm Graeme,Davies DonnaORCID,Jones Mark G.ORCID,Mahajan SumeetORCID

Abstract

AbstractLight sheet microscopy (LSM) has emerged as one of most profound three dimensional (3D) imaging tools in the life sciences over the last decade. However, LSM is currently performed with fluorescence detection on one- or multi-photon excitation. Label-free LSM imaging approaches have been rather limited. Second Harmonic Generation (SHG) imaging is a label-free technique that has enabled detailed investigation of collagenous structures, including its distribution and remodelling in cancers and respiratory tissue, and how these link to disease. SHG is generally regarded as having only forward- and back-scattering components, apparently precluding the orthogonal detection geometry used in Light Sheet Microscopy. In this work we demonstrate SHG imaging on a light sheet microscope (SHG-LSM) using a rotated Airy beam configuration that demonstrates a powerful new approach to direct, without any further processing or deconvolution, 3D imaging of harmonophores such as collagen in biological samples. We provide unambiguous identification of SHG signals on the LSM through its wavelength and polarisation sensitivity. In a multimodal LSM setup we demonstrate that SHG and two-photon signals can be acquired on multiple types of different biological samples. We further show that SHG-LSM is sensitive to changes in collagen synthesis within lung fibroblast 3D cell cultures. This work expands on the existing optical methods available for use with light sheet microscopy, adding a further label-free imaging technique which can be combined with other detection modalities to realise a powerful multi-modal microscope for 3D bioimaging.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3