Abstract
AbstractHigh-producing Holstein Friesian dairy cattle have a characteristic black and white coat pattern where black frequently comprises a large proportion of the coat. Compared to a light coat color, black absorbs more solar radiation translating into radiative heat gain which is a contributing factor to heat stress in cattle, negatively impacting on their production levels, fertility and welfare. To better adapt dairy cattle to the rapidly changing climatic conditions with predictions for more frequent and prolonged hot temperature patterns, we aimed to lighten their coat color by genome editing. Using gRNA/Cas9-mediated editing, we introduced a three base pair (bp) deletion in the pre-melanosomal protein 17 gene (PMEL) proposed as the causative variant responsible for the semi-dominant color dilution phenotype seen in Galloway and Highland cattle. Calves generated from cells homozygous for the edited mutation revealed a strong color dilution effect. Instead of the characteristic black and white coat color patterning of control calves generated from unedited parental cells, the edited calves displayed a novel pattern of grey and white markings and absence of any black areas. This, for the first time, verified the causative nature of the PMEL mutation for diluting the black coat color in cattle. With these edited animals, it is now possible to dissect the effects of the introgressed edit and other interfering allelic variants that might exist in individual cattle and accurately determine the impact of only the three bp change on important health, welfare and production traits. In addition, our study proved targeted editing as a promising approach for the rapid adaptation of livestock to changing climatic conditions.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献