Exploring the binding of resveratrol to an oncogene promoter DNA sequence d(CCAATTGG)2 through multispectroscopic, nuclear magnetic resonance and molecular dynamics studies

Author:

Kumar Shailendra,Kumar Peeyush,Nair Maya S.

Abstract

AbstractWe report the interaction of resveratrol with an octamer DNA sequence d(CCAATTGG)2, present in the promoter region of many oncogenes, using a combination of absorption, fluorescence, calorimetric and nuclear magnetic resonance techniques to probe the binding. Resveratrol binds to the duplex sequence with a binding constant 2.20×106 M−1 in absorption studies. A ligandduplex stoichiometry of 2.2:1 was obtained with binding constant varying from 109 to 106M−1 with the concentration of DNA varied in fluorescence titration measurements. Spectral changes indicated external binding of resveratrol to duplex DNA. Circular dichroism data displayed minimal variation suggesting external binding. Melting temperatures of DNA and its 1:1 complex showed a difference of approximately 2.25°C, which supports the external binding. Nuclear magnetic resonance data showed resveratrol binds to the minor groove region near the AT basepair from the nuclear Overhauser effect spectroscopic cross peaks. Distance restrained molecular dynamics was employed in explicit solvent condition to obtain the lowest energy structure. The complex was stable and retained the B-DNA conformation. Findings in this study identify resveratrol as a minor groove binder to the AT region of DNA and pave the way for exploring resveratrol and its analogues as promising anticancer/antibacterial drug.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3