Abstract
AbstractEnhancers drive cell-type-specific gene transcription and are marked by H3K4me1. MLL4 (KMT2D), a major H3K4me1 methyltransferase with partial functional redundancy with MLL3 (KMT2C), is critical for enhancer activation and cell-type-specific gene induction during cell differentiation and development. However, the roles of MLL3/4-mediated enhancer H3K4me1 and MLL3/4 enzymatic activities in general in these processes remain unclear. Here, we report that MLL3/4 enzymatic activities are partially redundant during mouse development. Simultaneous elimination of both leads to embryonic lethality around E8.5. Using embryoid body (EB) differentiation as an in vitro model for early embryonic development, we show that Mll3 knockout MLL4 enzyme-dead embryonic stem cells (ESCs) are capable of differentiating towards the three germ layers but display severe cavitation defects, likely due to impaired induction of visceral endoderm. Importantly, MLL3/4-catalyzed H3K4me1 is dispensable for enhancer activation during early EB differentiation and lineage-specific neural differentiation. Together, these results suggest a critical, but enhancer H3K4me1-independent, role of MLL3/4 enzymatic activities in early embryonic development and ESC differentiation.HighlightsSimultaneous elimination of MLL3 and MLL4 enzymatic activities leads to early embryonic lethality in miceMLL3/4 enzymatic activities are dispensable for ESC differentiation towards the three germ layersESCs lacking MLL3/4 enzymatic activities show cavitation defects during EB differentiation, likely due to impaired VE inductionMLL3/4-catalyzed H3K4me1 is dispensable for enhancer activation in ESC differentiation
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献