A balance between matrix deformation and the coordination of turning events governs directed neutrophil migration in 3-D matrices

Author:

François Joshua,Kandasamy Adithan,Yeh Yi-Ting,Ayala Cindy,Meili Ruedi,Chien Shu,Lasheras Juan C.,del Álamo Juan C.

Abstract

AbstractThree-dimensional (3-D) neutrophil migration is essential for immune surveillance and inflammatory responses. During 3-D migration, especially through extravascular spaces, neutrophils rely on frontal protrusions and rear contractions to squeeze and maneuver through extracellular matrices containing narrow pores. However, the role of matrix density and the cells’ ability to probe and remodel matrix pores during 3-D chemotaxis are far from being understood. We investigated these processes by tracking the trajectories of over 20,000 neutrophils in a 3-D migration device containing collagen matrices of varying concentrations and analyzing the shape of these trajectories at multiple scales. Additionally, we quantified the transient 3-D matrix deformations caused by the migrating cells. The mean pore size of our reconstituted collagen matrices decreased when the collagen concentration ([col]) was increased. In low-[col] matrices, neutrophils exerted large transient deformations and migrated in relatively straight trajectories. In contrast, they were not able to appreciably deform high- [col] matrices and adapted to this inability by turning more often to circumvent these narrow matrix pores. While this adaptation resulted in slower migration, the cells were able to balance the more frequent turning with the long-range directional bias necessary for chemotaxis. Based on our statistical analysis of cell trajectories, we postulate that neutrophils achieve this balance by using matrix obstacles as pivoting points to steer their motion towards the chemoattractant. Inhibiting myosin-II contractility or Arp2/3-mediated pseudopod protrusions not only compromised the cells’ ability to deform the matrix, but also made them switch to increased turning in more restrictive matrices when compared to untreated control cells. Both myosin-II contractility and Arp2/3-mediated branched polymerization of actin played a role in fast migration, but Arp2/3 was also crucial for neutrophils when coordinating the orientations of successive turns to prevent veering away from the chemotactic path. These results may contribute to an improved understanding of the mechanisms employed by migrating neutrophils in confined 3-D environments, as well as the molecular and environmental regulators for maintaining persistent motion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3