Abstract
AbstractThe Pacific oyster (Crassostrea gigas) is a marine bivalve species with vital roles in coastal ecosystems and aquaculture globally. While extensive genomic tools are available for C. gigas, highly contiguous reference genomes are required to support both fundamental and applied research. In the current study, high coverage long and short read sequence data generated on Pacific Biosciences and Illumina platforms from a single female individual specimen was used to generate an initial assembly, which was then scaffolded into 10 pseudo chromosomes using both Hi-C sequencing and a high density SNP linkage map. The final assembly has a scaffold N50 of 58.4 Mb and a contig N50 of 1.8 Mb, representing a step advance on the previously published C. gigas assembly. The new assembly was annotated using Pacific Biosciences Iso-Seq and Illumina RNA-Seq data, identifying 30K putative protein coding genes, with an average of 3.9 transcripts per gene. Annotation of putative repeat elements highlighted an inverse relationship with gene density, and identified putative centromeres of the metacentric chromosomes. An enrichment of Helitron rolling circle transponsable elements was observed, suggesting their potential role in shaping the evolution of the C. gigas genome. This new chromosome-level assembly will be an enabling resource for genetics and genomics studies to support fundamental insight into bivalve biology, as well as for genetic improvement of C. gigas in aquaculture breeding programmes.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献