Abstract
ABSTRACTUnder amino acid starvation condition, eukaryotic organisms activate a general amino acid control response. In Neurospora crassa, Cross Pathway Control-1 (CPC-1), the ortholog of the Saccharomyces cerevisiae bZIP transcription factor GCN4, functions as the master regulator of the general amino acid control response. Codon usage biases are a universal feature of eukaryotic genomes and are critical for regulation of gene expression. Although codon usage has also been implicated in the regulation of protein structure and function, genetic evidence supporting this conclusion is very limited. Here we show that Neurospora cpc-1 has a non-optimal NNU-rich codon usage profile that contrasts with the strong NNC codon preference in the genome. Although substitution of the cpc-1 NNU codons with synonymous NNC codons elevated CPC-1 expression in Neurospora, it altered CPC-1 degradation rate and abolished its amino acid starvation-induced protein stabilization. The codon-manipulated CPC-1 protein also exhibited different sensitivity to limited protease digestion. Furthermore, CPC-1 functions in rescuing the cell growth of the cpc-1 deletion mutant and activating the expression of its target genes were impaired by the synonymous codon changes. Together, these results reveal the critical role of codon usage in regulating of CPC-1 expression and function, and establish a genetic example of the importance of codon usage in protein structure.Abstract importanceGeneral amino acid control response is critical for organisms to adapt to amino acid starvation condition. The preference to use certain synonymous codons are a universal feature of all genomes. Synonymous codon changes were previously thought to be silent mutations. In this study, we show that the Neurospora cpc-1 gene has an unusual codon usage profile compared to other genes in the genome. We found that codon optimization of the cpc-1 gene without changing its amino acid sequence resulted in elevated CPC-1 expression, altered protein degradation rate and impaired protein functions due to changes in protein structure. Together, these results reveal the critical role of synonymous codon usage in regulating of CPC-1 expression and function, and establish a genetic example of the importance of codon usage in protein structure.
Publisher
Cold Spring Harbor Laboratory