Parvalbumin interneurons in the nucleus accumbens regulate impairment of risk avoidance in DISC1 transgenic mice

Author:

Zhou Xinyi,Wu Bifeng,Xiao Qian,He Wei,Zhou Ying,Wei Pengfei,Zhang Xu,Liu Yue,Wang Jie,Li Weidong,Wang Liping,Tu Jie

Abstract

AbstractOne strong survival instinct in animals is to approach things that are of benefit and avoid risk. In humans, a large portion of mental disorders are accompanied by cognition-related impairments including the inability to recognize potential risks. One of the most important genes involved in risk behavior is disrupted-in-schizophrenia-1 (DISC1), and animal models where this gene has some dysfunction show cognitive impairments. However, whether DISC1 mice models have an impairment in avoiding potential risks is still not fully understood. In the present study, we used DISC1-N terminal truncation (DISC1-NTM) mice to study cognitive abilities related to potential risks. We found that DISC1-NTM mice were impaired in risk avoidance on the elevated plus maze (EPM) test, and showed impairment in social preference in a three-chamber social interaction test. Staining for c-Fos following the EPM indicated that the nucleus accumbens (NAc) was associated with risk avoidance behavior in DISC1-NTM mice. Meanwhile, in vivo electrophysiological recordings showed that firing rates of fast spiking neurons (FS) in the NAc significantly decreased in DISC1-NTM mice following tamoxifen administration. In addition, theta band power was lower when mice shuttled from the safe (closed) arms to the risky (open) arms, an effect which disappeared after induction of the truncated DISC1 gene. Furthermore, we found through in vitro patch clamp recording that the frequency of action potentials stimulated by current injection was lower in parvalbumin (PV) neurons in the NAc of DISC1-NTM mice than their wild-type littermates. Risk-avoidance impairments in DISC1-NTM mice were rescued using optogenetic tools that activated NAcPV neurons. Finally, we inhibited activitiy of NAcPV neurons in PV-Cre mice, which mimicked the risk-avoidance impairment found in the DISC1-NTM mice during tests on the elevated zero maze. Taken together, our findings confirmed a cognitive impairment in DISC1-NTM mice related to risk recognition and suggests that reduced excitability of NAcPV neurons may be responsible.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3