Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves

Author:

Parag Kris VORCID

Abstract

AbstractWe construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective reproduction number, R, from the incidence of an infectious disease in real time and retrospectively. Our approach borrows from Kalman filtering theory, is quick and easy to compute, generalisable, deterministic and unlike many current methods, requires no change-point or window size assumptions. We model R as a flexible, hidden Markov state process and exactly solve forward-backward algorithms, to derive R estimates that incorporate all available incidence information. This unifies and extends two popular methods, EpiEstim, which considers past incidence, and the Wallinga-Teunis method, which looks forward in time. We find that this combination of maximising information and minimising assumptions significantly reduces the bias and variance of R estimates. Moreover, these properties make EpiFilter more statistically robust in periods of low incidence, where existing methods can become destabilised. As a result, EpiFilter offers improved inference of time-varying transmission patterns that are especially advantageous for assessing the risk of upcoming waves of infection in real time and at various spatial scales.Author SummaryInferring changes in the transmissibility of an infectious disease is crucial for understanding and controlling epidemic spread. The effective reproduction number, R, is widely used to assess transmissibility. R measures the average number of secondary cases caused by a primary case and has provided insight into many diseases including COVID-19. An upsurge in R can forewarn of upcoming infections, while suppression of R can indicate if public health interventions are working. Reliable estimates of temporal changes in R can contribute important evidence to policymaking. Popular R-inference methods, while powerful, can struggle when cases are few because data are noisy. This can limit detection of crucial variations in transmissibility that may occur, for example, when infections are waning or when analysing transmissibility over fine geographic scales. In this paper we improve the general reliability of R-estimates and specifically increase robustness when cases are few. By adapting principles from control engineering, we formulate EpiFilter, a novel method for inferring R in real time and retrospectively. EpiFilter can potentially double the information extracted from epidemic time-series (when compared to popular approaches), significantly filtering the noise within data to minimise both bias and uncertainty of R-estimates and enhance the detection of salient changepoints in transmissibility.

Publisher

Cold Spring Harbor Laboratory

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3