A computational examination of the two-streams hypothesis: which pathway needs a longer memory?

Author:

Alipour AbolfazlORCID,Beggs JohnORCID,Brown Joshua,James Thomas

Abstract

The two visual streams hypothesis is a robust example of neural functional specialization that has inspired countless studies over the past four decades. According to one prominent version of the theory, the fundamental goal of the dorsal visual pathway is the transformation of retinal information for visually-guided motor behavior. To that end, the dorsal stream processes input using absolute (or veridical) metrics only when the movement is initiated, necessitating very little, or no, memory. Conversely, because the ventral visual pathway does not involve motor behavior (its output does not influence the real world), the ventral stream processes input using relative (or illusory) metrics and can accumulate or integrate sensory evidence over long time constants, which provides a substantial capacity for memory. In this study, we tested these relations between functional specialization, processing metrics, and memory by training identical recurrent neural networks to perform either a viewpoint-invariant object classification task or an orientation/size determination task. The former task relies on relative metrics, benefits from accumulating sensory evidence, and is usually attributed to the ventral stream. The latter task relies on absolute metrics, can be computed accurately in the moment, and is usually attributed to the dorsal stream. To quantify the amount of memory required for each task, we chose two types of neural network models. Using a long-short-term memory (LSTM) recurrent network, we found that viewpoint-invariant object categorization (object task) required a longer memory than orientation/size determination (orientation task). Additionally, to dissect this memory effect, we considered factors that contributed to longer memory in object tasks. First, we used two different sets of objects, one with self-occlusion of features and one without. Second, we defined object classes either strictly by visual feature similarity or (more liberally) by semantic label. The models required greater memory when features were self-occluded and when object classes were defined by visual feature similarity, showing that self-occlusion and visual similarity among object task samples are contributing to having a long memory. The same set of tasks modeled using modified leaky-integrator echo state recurrent networks (LiESN), however, did not replicate the results, except under some conditions. This may be because LiESNs cannot perform fine-grained memory adjustments due to their network-wide memory coefficient and fixed recurrent weights. In sum, the LSTM simulations suggest that longer memory is advantageous for performing viewpoint-invariant object classification (a putative ventral stream function) because it allows for interpolation of features across viewpoints. The results further suggest that orientation/size determination (a putative dorsal stream function) does not benefit from longer memory. These findings are consistent with the two visual streams theory of functional specialization.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lessons from human vision for robotic design;Autonomous Intelligent Systems;2021-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3