Bio-hybrid soft robots with self-stimulating skeletons

Author:

Guix MariaORCID,Mestre RafaelORCID,Patiño TaniaORCID,De Corato MarcoORCID,Zarpellon Giulia,Sánchez SamuelORCID

Abstract

AbstractBioinspired hybrid soft robots combining living actuation and synthetic components are an emerging field in the development of advanced actuators and other robotic platforms (i.e. swimmers, crawlers, walkers). The integration of biological components offers unique properties (e.g. adaptability, response to external stimuli) that artificial materials cannot replicate with accuracy, being skeletal and cardiac muscle cells the preferred candidates for providing contractile actuation. Here, we present a skeletal-muscle-based swimming biobot with a 3D-printed serpentine spring skeleton that provides mechanical integrity and self-stimulation during the cell maturation process. The restoring force inherent to the spring system allows a dynamic skeleton compliance upon spontaneous muscle contraction, leading to a novel cyclic mechanical stimulation process that improves the muscle force output without external stimuli. Optimization of the 3D-printed skeletons is carried out by studying the geometrical stiffnesses of different designs via finite element analysis. Upon electrical actuation of the muscle tissue, two types of motion mechanisms are experimentally observed: i) directional swimming when the biobot is at the liquid-air interface and ii) coasting motion when it is near the bottom surface. The integrated compliant skeleton provides both the mechanical self-stimulation and the required asymmetry for directional motion, displaying its maximum velocity at 5 Hz (800 micrometer second−1, 3 body length second−1). This skeletal muscle-based bio-hybrid swimmer attains speeds comparable to cardiac-based bio-hybrid robots and outperforms other muscle-based swimmers. The integration of serpentine-like structures in hybrid robotic systems allows self-stimulation processes that could lead to higher force outputs in current and future biomimetic robotic platforms.

Publisher

Cold Spring Harbor Laboratory

Reference79 articles.

1. S. Camazine , J. L. Deneubourg , N. R. Franks , J. Sneyd , E. Bonabeau , G. Theraula , Self-Organization in Biological Systems, Princeton University Press, 2003.

2. The role of mechanics in biological and bio-inspired systems

3. In Self-Healing Compos., John Wiley & Sons Ltd, Chichester, United Kingdom, 2014, pp. 21–34.

4. Spatial Sensing of Stimulus Gradients Can Be Superior to Temporal Sensing for Free-Swimming Bacteria

5. Bio-hybrid muscle cell-based actuators

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biohybrid robotics: From the nanoscale to the macroscale;WIREs Nanomedicine and Nanobiotechnology;2021-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3