Self-Supervised Natural Image Reconstruction and Rich Semantic Classification from Brain Activity

Author:

Gaziv GuyORCID,Beliy Roman,Granot Niv,Hoogi Assaf,Strappini Francesca,Golan TalORCID,Irani Michal

Abstract

AbstractReconstructing natural images and decoding their semantic category from fMRI brain recordings is challenging. Acquiring sufficient pairs (image, fMRI) that span the huge space of natural images is prohibitive. We present a novel self-supervised approach for fMRI-to-image reconstruction and classification that goes well beyond the scarce paired data. By imposing cycle consistency, we train our image reconstruction deep neural network on many “unpaired” data: a plethora of natural images without fMRI recordings (from many novel categories), and fMRI recordings without images. Combining high-level perceptual objectives with self-supervision on unpaired data results in a leap improvement over top existing methods, achieving: (i) Unprecedented image-reconstruction from fMRI of never-before-seen images (evaluated by image metrics and human testing); (ii) Large-scale semantic classification (1000 diverse classes) of categories that are never-before-seen during network training. Such large-scale (1000-way) semantic classification capabilities from fMRI recordings have never been demonstrated before. Finally, we provide evidence for the biological plausibility of our learned model. 1

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3