Scalable Models of Antibody Evolution and Benchmarking of Clonal Tree Reconstruction Methods

Author:

Zhang ChaoORCID,Bzikadze Andrey V.,Safonova YanaORCID,Mirarab Siavash

Abstract

AbstractAffinity maturation (AM) of antibodies through somatic hypermutations (SHMs) enables the immune system to evolve to recognize diverse pathogens. The accumulation of SHMs leads to the formation of clonal trees of antibodies produced by B cells that have evolved from a common naive B cell. Recent advances in high-throughput sequencing have enabled deep scans of antibody repertoires, paving the way for reconstructing clonal trees. However, it is not clear if clonal trees, which capture micro-evolutionary time scales, can be reconstructed using traditional phylogenetic reconstruction methods with adequate accuracy. In fact, several clonal tree reconstruction methods have been developed to fix supposed shortcomings of phylogenetic methods. Nevertheless, no consensus has been reached regarding the relative accuracy of these methods, partially because evaluation is challenging. Benchmarking the performance of existing methods and developing better methods would both benefit from realistic models of clonal tree evolution specifically designed for emulating B cell evolution. In this paper, we propose a model for modeling B cell clonal tree evolution and use this model to benchmark several existing clonal tree reconstruction methods. Our model, designed to be extensible, has several features: by evolving the clonal tree and sequences simultaneously, it allows modelling selective pressure due to changes in affinity binding; it enables scalable simulations of millions of cells; it enables several rounds of infection by an evolving pathogen; and, it models building of memory. In addition, we also suggest a set of metrics for comparing clonal trees and for measuring their properties. Our benchmarking results show that while maximum likelihood phylogenetic reconstruction methods can fail to capture key features of clonal tree expansion if applied naively, a very simple postprocessing of their results, where super short branches are contracted, leads to inferences that are better than alternative methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3