Molecular plasticity of the native mouse skeletal sarcomere revealed by cryo-ET

Author:

Wang ZhexinORCID,Grange MichaelORCID,Wagner ThorstenORCID,Kho Ay LinORCID,Gautel MathiasORCID,Raunser StefanORCID

Abstract

AbstractSarcomeres are the force-generating and load-bearing devices of muscles. A precise molecular understanding of how the entire sarcomere is built is required to understand its role in health, disease and ageing. Here, we determine the in situ molecular architecture of vertebrate skeletal sarcomeres through electron cryo-tomography of cryo-focused ion beam-milled native myofibrils. The reconstructions reveal the three-dimensional organisation and interaction of actin and myosin filaments in the A-band, I-band and Z-disc and demonstrate how α -actinin cross-links antiparallel actin filaments to form a mesh-like structure in the Z-disc at an unprecedented level of molecular detail. A prominent feature is a so-far undescribed doublet of α-actinin cross-links with ∼ 6 nm spacing. Sub-volume averaging shows the interaction between myosin, tropomyosin and actin in molecular detail at ∼ 10 Å resolution and reveals two coexisting conformations of actin-bound heads. The flexible orientation of the lever arm and the essential and regulatory light chains allow the two heads of the “double-headed” myosin not only to interact with the same actin filament but also to split between two actin filaments. Our results provide new insights into the conformational plasticity and fundamental organisation of vertebrate skeletal muscle and serve as a strong foundation for future in situ investigations of muscle diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3