Multi-locus genotyping reveals established endemicity of a geographically distinct Plasmodium vivax population in Mauritania, West Africa

Author:

Ba HampateORCID,Auburn SarahORCID,Jacob Christopher G.,Goncalves Sonia,Duffy Craig W.,Stewart Lindsay B.,Price Ric N.,Deh Yacine Boubou,Diallo Mamadou Yero,Tandia Abderahmane,Kwiatkowski Dominic P.,Conway David J.ORCID

Abstract

AbstractBackgroundPlasmodium vivax has been recently discovered as a significant cause of malaria in Mauritania, although very rare elsewhere in West Africa. It has not been known if this is a recently introduced or locally remnant parasite population, nor whether the genetic structure reflects epidemic or endemic transmission.Methodology / Principal FindingsTo investigate the P. vivax population genetic structure in Mauritania and compare with populations previously analysed elsewhere, multi-locus genotyping was undertaken on 100 clinical isolates, using a genome-wide panel of 38 single nucleotide polymorphisms (SNPs), plus seven SNPs in drug resistance genes. The Mauritanian P. vivax population is shown to be genetically diverse and divergent from populations elsewhere, indicated consistently by genetic distance matrix analysis, principal components analyses, and fixation indices. Only one isolate had a genotype clearly indicating recent importation, from a southeast Asian source. There was no linkage disequilibrium in the local parasite population, and only a small number of infections appeared to be closely genetically related, indicating that there is ongoing genetic recombination consistent with endemic transmission. The P. vivax diversity in a remote mining town was similar to that in the capital Nouakchott, with no indication of local substructure or of epidemic population structure. Drug resistance alleles were virtually absent in Mauritania, in contrast with P. vivax in other areas of the world.Conclusions / SignificanceThe molecular epidemiology indicates that there is long-standing endemic transmission that will be very challenging to eliminate. The virtual absence of drug resistance alleles suggests that most infections have been untreated, and that this endemic infection has been more neglected in comparison to P. falciparum locally or to P. vivax elsewhere.Author SummaryPlasmodium vivax is a widespread cause of malaria in Mauritania, in contrast to its rarity elsewhere throughout West Africa. To investigate whether the parasite may be recently introduced or epidemic, multi-locus genotyping was performed on 100 Mauritanian P. vivax malaria cases. Analysis of a genome-wide panel of single nucleotide polymorphisms showed the P. vivax population to be genetically diverse and divergent from populations elsewhere, indicating that there has been long-standing endemic transmission. Almost all infections appear to be locally acquired, with the exception of one that was presumably imported with a genotype similar to infections seen in Southeast Asia. The Mauritanian P. vivax population shows no linkage disequilibrium, and very few infections have closely related genotypes, indicating ongoing recombination. The parasite showed no indication of local substructure or epidemic population structure. Drug resistance alleles were virtually absent, suggesting that most infections have been untreated historically. The molecular epidemiology indicates that there has been long-standing endemic transmission of this neglected parasite that requires special attention for control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3