Evaluation of nafamostat mesylate safety and inhibition of SARS-CoV-2 replication using a 3-dimensional human airway epithelia model

Author:

Kirkpatrick D. Lynn,Millard Jeffrey

Abstract

AbstractIn the current COVID-19 pandemic context, Ensysce and its subsidiary Covistat have been working to repurpose nafamostat mesylate as an effective oral and inhalation treatment against SARS-CoV-2 infection. Prior reports used cell lines to demonstrate the antiviral potential of nafamostat against coronaviral infections and determined its mechanism of action through inhibition of transmembrane protease serine 2 (TMPRSS2). We selected a biologically relevant pre-clinical experimental model of SARS-CoV-2 lung infection using a 3D human reconstituted airway epithelial model of nasal origin to characterize the effects of nafamostat on tissue-level cellular ultrastructure and viral infection kinetics. Our results confirm the not only the relevance of this model for the preclinical evaluation of safety and efficacy of antiviral candidates, but also the highly potent nature of nafamostat SARS-CoV-2 antiviral activity. The studies described herein provided evidence demonstrating the therapeutic potential of nafamostat against COVID-19, as well as its safety upon exposure to lung airway cellular.One Sentence SummaryUsing a human airway model, study demonstrates the powerful inhibitory effect of nafamostat on SARS-CoV-2 genome copy detection when applied apically.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3