Seasonal and long-term consequences of esca on grapevine stem xylem integrity

Author:

Bortolami G.ORCID,Farolfi E.,Badel E.,Burlett R.,Cochard H.,Ferrer N.,King A.,Lamarque L.J.,Lecomte P.,Marchesseau-Marchal M.,Pouzoulet J.,Torres-Ruiz J.M.ORCID,Trueba S.ORCID,Delzon S.,Gambetta G.A.,Delmas C.E.L.ORCID

Abstract

ABSTRACTHydraulic failure has been extensively studied during drought-induced plant dieback, but its role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known about the hydraulic integrity of perennial organs over the short- and long-term. We investigated the effects of esca on stem hydraulic integrity in naturally infected plants within a single season and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measurements, and tylose and vascular pathogen detection with in vivo X-ray microtomography visualizations. We found xylem occlusions (tyloses), and subsequent loss of stem ks, in all of the shoots with severe symptoms (apoplexy) and in more than 60% of the shoots with moderate symptoms (tiger-stripe), and no tyloses in shoots that were currently asymptomatic. In vivo stem observations demonstrated that tyloses were observed only when leaf symptoms appeared, and resulted in more than 50% PLC in 40% of symptomatic stems, unrelated to symptom age. The impact of esca on xylem integrity was only seasonal and no long-term impact of disease history was recorded. Our study demonstrated how and to what extent a vascular disease such as esca, affecting xylem integrity, could amplify plant mortality by hydraulic failure.HighlightOur study reveals that esca can critically affect xylem water movement in grapevine perennial organs, by the presence of plant-derived tyloses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3