Deletion of Stim1 in hypothalamic arcuate nucleus Kiss1 neurons potentiates synchronous GCaMP activity and protects against diet-induced obesity

Author:

Qiu JianORCID,Stincic Todd L.ORCID,Bosch Martha A.,Connors Ashley M.,Petrie Stefanie Kaech,Rønnekleiv Oline K.ORCID,Kelly Martin J.ORCID

Abstract

AbstractKisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. High frequency firing of hypothalamic arcuate Kiss1 (Kiss1ARH) neurons releases kisspeptin into the median eminence, and neurokinin B (NKB) and dynorphin onto neighboring Kiss1ARH neurons to generate a slow excitatory postsynaptic potential (EPSP) mediated by TRPC5 channels that entrains intermittent, synchronous firing of Kiss1ARH neurons. High frequency optogenetic stimulation of Kiss1ARH neurons releases glutamate to excite the anorexigenic proopiomelanocortin (POMC) neurons and inhibit the orexigenic neuropeptide Y/agouti-related peptide (AgRP) neurons via metabotropic glutamate receptors. At the molecular level, the endoplasmic reticulum calcium-sensing protein stromal interaction molecule 1 (STIM1) is critically involved in the regulation of neuronal Ca2+ signaling and neuronal excitability through its interaction with plasma membrane calcium (e.g., TRPC) channels. 17β-estradiol (E2) downregulates Stim1 mRNA expression in female arcuate neurons. Therefore, we hypothesized that deletion of Stim1 in Kiss1ARH neurons would increase neuronal excitability and their synchronous firing, which ultimately would affect energy homeostasis. Using optogenetics in combination with whole-cell recording and GCaMP6 imaging in slices, we discovered that the deletion of Stim1 in Kiss1 neurons significantly increased the amplitude of the slow EPSP and augmented synchronous [Ca2+]i oscillations in Kiss1ARH neurons. Deletion of Stim1 in Kiss1ARH neurons amplified the actions of NKB and protected ovariectomized female mice from developing obesity and glucose intolerance with high-fat dieting. Therefore, STIM1 appears to play a critical role in regulating synchronous firing of Kiss1ARH neurons, which ultimately affects energy homeostasis.Significance StatementHypothalamic arcuate kisspeptin (Kiss1ARH) neurons are essential for stimulating the pulsatile release of gonadotropin releasing hormone (GnRH) and maintaining fertility. However, Kiss1ARH neurons appear to be a key player in coordinating energy balance with reproduction. The regulation of calcium channels and hence calcium signaling is critically dependent on the endoplasmic reticulum calcium-sensing protein stromal interaction molecule 1 (STIM1), which interacts with the plasma membrane calcium channels. We have conditionally deleted Stim1 in Kiss1ARH neurons and found that it significantly increased the excitability of Kiss1ARH neurons and protected ovariectomized female mice from developing obesity and glucose intolerance with high-fat dieting.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3