Abstract
AbstractPlant thermal tolerance is a crucial research area as the climate warms and extreme weather events become more frequent. Leaves exposed to temperature extremes have inhibited photosynthesis and will accumulate damage to photosystem II (PSII) if tolerance thresholds are exceeded. Temperature-dependent changes in basal chlorophyll fluorescence (T-F0) can be used to identify the critical temperature at which PSII is inhibited. We developed and tested a high-throughput method for measuring the critical temperatures for PSII at low (CTMIN) and high (CTMAX) temperatures using a Maxi-Imaging fluorimeter and a thermoelectric Peltier plate heating/cooling system. We examined how experimental conditions: wet vs dry surfaces for leaves and heating/cooling rate, affect CTMIN and CTMAX across four species. CTMAX estimates were not different whether measured on wet or dry surfaces, but leaves were apparently less cold tolerant when on wet surfaces. Heating/cooling rate had a strong effect on both CTMAX and CTMIN that was species-specific. We discuss potential mechanisms for these results and recommend settings for researchers to use when measuring T-F0. The approach that we demonstrated here allows the high-throughput measurement of a valuable ecophysiological parameter that estimates the critical temperature thresholds of leaf photosynthetic performance in response to thermal extremes.
Publisher
Cold Spring Harbor Laboratory