Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network

Author:

David RakeshORCID,Menezes Rhys-Joshua D.,De Klerk Jan,Castleden Ian R.,Hooper Cornelia M.,Carneiro Gustavo,Gilliham Matthew

Abstract

AbstractWith the advent of increased diversity and scale of molecular data, there has been a growing appreciation for the applications of machine learning and statistical methodologies to gain new biological insights. An important step in achieving this aim is the Relation Extraction process which specifies if an interaction exists between two or more biological entities in a published study. Here, we employed natural-language processing (CBOW) and deep Recurrent Neural Network (bi-directional LSTM) to predict relations between biological entities that describe protein subcellular localisation in plants. We applied our system to 1700 published Arabidopsis protein subcellular studies from the SUBA manually curated dataset. The system was able to extract relevant text and the classifier predicted interactions between protein name, subcellular localisation and experimental methodology. It obtained a final precision, recall rate, accuracy and F1 scores of 0.951, 0.828, 0.893 and 0.884 respectively. The classifier was subsequently tested on a similar problem in crop species (CropPAL) and demonstrated a comparable accuracy measure (0.897). Consequently, our approach can be used to extract protein functional features from unstructured text in the literature with high accuracy. The developed system will improve dissemination or protein functional data to the scientific community and unlock the potential of big data text analytics for generating new hypotheses from diverse datasets.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3