Prevention of EAE by PEGylated Antigenic Peptides

Author:

Pfeil Jennifer,Simonetti Mario,Lauer Uta,von Thülen Bianca,Durek Pawel,Poulsen Christina,Pawlowska Justyna,Kröger Matthias,Krähmer Ralf,Leenders Frank,Hoffmann Ute,Hamann AlfORCID

Abstract

AbstractThe treatment of autoimmune disorders such as multiple sclerosis (MS) so far relies largely on the use of non-specific immunosuppressive drugs, which are not able to cure the disease. Presently, approaches to induce antigen-specific tolerance e.g. by peptide-based tolerogenic “inverse” vaccines regain interest. We previously have shown that coupling of peptides to carriers can enhance their capacity to induce regulatory T cells in vivo. We here investigated in an experimental autoimmune encephalomyelitis (EAE) model for chronic MS (MOG C57BL/6) whether the tolerogenic potential of immunodominant myelin T cell epitopes can be improved by conjugation to the synthetic carrier polyethylene glycol (PEG). Indeed, preventive administration of the PEGylated antigenic peptide could almost completely protect mice from EAE development, which was accompanied by reduced immune cell infiltration in the central nervous system (CNS). Depletion of Tregs abrogated the protective effect indicating that Tregs play a crucial role in induction of antigen-specific tolerance in EAE. Treatment during the acute phase was safe and did not induce immune activation. However, treatment at the peak of disease was not affecting the disease course, suggesting that either induction of Tregs is not occurring in the highly inflamed situation, or that the immune system is refractory to regulation in this condition. Thus, PEGylation of antigenic peptides is an effective and feasible strategy to improve tolerogenic (Treg-inducing) peptide-based vaccines, but application in overt disease might require modifications or combination therapies that simultaneously suppress effector mechanisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3