Single-cell analysis of prostaglandin E2-induced decidual cell differentiation: does extracellular 8-Br-cAMP cause artifacts?

Author:

Stadtmauer Daniel J.,Wagner Günter P.

Abstract

AbstractDevelopment of the uterine decidua, the transient maternal tissue contacting the fetus during extended gestation, is the hallmark of reproduction in many placental mammals. Differentiation of decidual stromal cells is known to be induced by stimuli that activate the nuclear progesterone receptor and the cyclic AMP/protein kinase A (cAMP/PKA) pathways. The nature of the stimulus upstream of PKA has not been clearly defined, although a number of candidates have been proposed. To bypass this uncertainty for in vitro experiments, direct addition of membrane-permeable cAMP along with progestin has been the prevailing method. Phylogenetic inference suggests that the inflammatory eicosanoid prostaglandin E2 (PGE2) was the stimulus that ancestrally induced decidualization. Accordingly, we developed a protocol to decidualize human endometrial stromal fibroblasts using progestin and PGE2 and analyzed the response in comparison with a cAMP-based protocol. Transcriptomic comparison reveals a common activation of core decidual cell genes between both treatments, and a set of senescence-related genes exaggerated under cAMP treatment. Single-cell transcriptomic analysis of PGE2-mediated decidualization revealed a major transcriptomic transition between an early activated cell state and a differentiated decidual state, but notably did not identify a developmental trajectory representing a distinct senescent decidual state as reported in recent literature. Furthermore, investigation of the signal transduction process underlying PGE2-mediated decidualization showed that it depends upon progestin-dependent induction of PGE2 receptor 2 (PTGER2 aka EP2) and PKA, the kinase activated by PTGER2. This progesterone-dependent induction of PTGER2 is absent in the opossum, a species incapable of decidualization. Together, these findings suggest that the origin of the decidual cell type involved the evolution of progesterone-dependent activation of the PGE2/EP2/PKA axis. We propose the use of PGE2 for in vitro decidualization studies as a potentially more physiological model than 8-Br-cAMP.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3