Predicting age and clinical risk from the neonatal connectome

Author:

Taoudi-Benchekroun YassineORCID,Christiaens DaanORCID,Grigorescu IrinaORCID,Gale-Grant Oliver,Schuh AndreasORCID,Pietsch MaximilianORCID,Chew Andrew,Harper Nicholas,Falconer ShonaORCID,Poppe TanyaORCID,Hughes EmerORCID,Hutter JanaORCID,Price Anthony NORCID,Tournier J-DonaldORCID,Cordero-Grande LucilioORCID,Counsell Serena JORCID,Rueckert DanielORCID,Arichi TomokiORCID,Hajnal Joseph VORCID,Edwards A DavidORCID,Deprez MariaORCID,Batalle DafnisORCID

Abstract

AbstractThe development of perinatal brain connectivity underpins motor, cognitive and behavioural abilities in later life. Diffusion MRI allows the characterisation of subtle inter-individual differences in structural brain connectivity. Individual brain connectivity maps (connectomes) are by nature high in dimensionality and are complex to interpret. Machine learning methods are a powerful tool to uncover properties of the connectome which are not readily visible, and can give us clues as to how and why individual developmental trajectories differ.In this manuscript we used Deep Neural Networks and Random Forests to predict demographic and neurodevelopmental characteristics from neonatal structural connectomes in a large sample of babies (n = 524) from the developing Human Connectome Project. We achieved an accurate prediction of post menstrual age (PMA) at scan in term-born infants (Mean absolute error (MAE) = 0.72 weeks, r = 0.83 and p<0.001). We also achieved good accuracy when predicting gestational age at birth in a cohort of term and preterm babies scanned at term equivalent age (MAE = 2.21 weeks, r = 0.82, p<0.001). We subsequently used sensitivity analysis to obtain feature relevance from our prediction models, with the most important connections for prediction of PMA and GA found to be predominantly thalamocortical. From our models of PMA at scan for infants born at term, we computed a brain maturation index (predicted age minus actual age) of individual preterm neonates and found a significant correlation between this index and motor outcome at 18 months corrected age. Our results demonstrate the applicability of machine learning techniques in analyses of the neonatal connectome, and suggest that a neural substrate for later developmental outcome is detectable at term equivalent age.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3