3DFAACTS-SNP: Using regulatory T cell-specific epigenomics data to uncover candidate mechanisms of Type-1 Diabetes (T1D) risk

Author:

Liu NingORCID,Sadlon Timothy,Wong Ying Ying,Pederson StephenORCID,Breen JamesORCID,Barry Simon CORCID

Abstract

AbstractBackgroundGenome-wide association and fine-mapping studies have enabled the discovery of single nucleotide polymorphisms (SNPs) and other variants that are significantly associated with many autoimmune diseases including type 1 diabetes (T1D). However, many of the SNPs lie in non-coding regions, limiting the identification of mechanisms that contribute to autoimmune disease progression.MethodsAutoimmunity results from a failure of immune tolerance, suggesting that regulatory T cells (Treg) are likely a significant point of impact for this genetic risk, as Treg are critical for immune tolerance. Focusing on T1D as a model of defective function of Treg in autoimmunity, we designed a SNPs filtering workflow called 3 Dimensional Functional Annotation of Accessible Cell Type Specific SNPs (3DFAACTS-SNP) that utilises overlapping profiles of Treg-specific epigenomic data (ATAC-seq, Hi-C and FOXP3-ChIP) to identify regulatory elements potentially driving the effect of variants associated with T1D, and the gene(s) that they control.ResultsUsing 3DFAACTS-SNP we identified 36 SNPs with plausible Treg-specific mechanisms of action contributing to T1D from 1,228 T1D fine-mapped variants, identifying 119 novel interacting regions resulting in the identification of 51 candidate target genes. We further demonstrated the utility of the workflow by applying it to three other fine-mapped/meta-analysed SNP autoimmune datasets, identifying 17 Treg-centric candidate variants and 35 interacting genes. Finally, we demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of any genetic variation using all common (>10% allele frequency) variants from the Genome Aggregation Database (gnomAD). We identified 7,900 candidate variants and 3,245 candidate target genes, generating a list of potential sites for future T1D or autoimmune research.ConclusionsWe demonstrate that it is possible to further prioritise variants that contribute to T1D based on regulatory function and illustrate the power of using cell type specific multi-omics datasets to determine disease mechanisms. The 3DFAACTS-SNP workflow can be customised to any cell type for which the individual datasets for functional annotation have been generated, giving broad applicability and utility.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3