A spatial model of the plant circadian clock reveals design principles for coordinated timing under noisy environments

Author:

Greenwood MarkORCID,Tokuda Isao T.ORCID,Locke James C.W.ORCID

Abstract

AbstractIndividual plant cells possess a genetic network, the circadian clock, that times internal processes to the day-night cycle. Mathematical models of the clock network have driven a mechanistic understanding of the clock in plants. However, these models are typically either ‘whole plant’ models that ignore tissue or cell type specific clock behavior, or ‘phase only’ models that do not include clock network components explicitly. It is increasingly clear that in order to reveal the design principles of the plant circadian clock, clock network models must address spatial differences. This is because complex spatial behaviours have been observed in tissues and cells in plants, including period and phase differences between cells and spatial waves of gene expression between organs. Here, we implement an up to date clock network model on a spatial template of the plant. In our model, the sensitivity to light inputs varies across the plant, and cells communicate their clock timing locally via the levels of core clock mRNA levels by cell-to-cell coupling. We found that differences in sensitivities to environmental input in the model can explain the experimentally observed differences in clock periods in different organs, and we show using the model that a plausible coupling mechanism can generate the experimentally observed waves in clock gene expression across the plant. We then examined what features of the plant circadian system allow it to keep time under noisy light-dark (LD) cycles. We found that differences in sensitivity to light can allow regional flexibility in phase even under LD cycles, whilst local cell-to-cell coupling minimized variability in clock rhythms in neighboring cells. Thus, local sensitivity to environmental inputs combined with cell-to-cell coupling allows for flexible yet robust circadian timing under noisy environments.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3