Shoot-derived miR2111 controls legume root and nodule development

Author:

Zhang MengbaiORCID,Su HuananORCID,Gresshoff Peter M.ORCID,Ferguson Brett J.ORCID

Abstract

AbstractLegumes control their nodule numbers through the Autoregulation Of Nodulation (AON). Rhizobia infection stimulates the production of root-derived CLE peptide hormones that are translocated to the shoot where they regulate a new signal. We used soybean to demonstrate that this shoot-derived signal is miR2111, which is transported via phloem to the root where it targets transcripts of Too Much Love (TML), a negative regulator of nodulation. Shoot perception of rhizobia-induced CLE peptides suppresses miR2111 expression, resulting in TML accumulation in roots and subsequent inhibition of nodule organogenesis. Feeding synthetic mature miR2111 via the petiole increased nodule numbers per plant. Likewise, elevating miR2111 availability by over-expression promoted nodulation, while target mimicry of TML induced the opposite effect on nodule development in wild-type plants and alleviated the supernodulating and stunted root growth phenotypes of AON-defective mutants. Additionally, in non-nodulating wild-type plants, ectopic expression of miR2111 significantly enhanced lateral root emergence with a decrease in lateral root length and average root diameter. In contrast, hairy roots constitutively expressing the target mimic construct exhibited reduced lateral root density. Overall, these findings demonstrate that miR2111 is both the critical shoot-to-root factor that positively regulates root nodule development, and also acts to shape root system architecture via orchestrating the degree of root branching, as well as the length and thickness of lateral roots.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3